3.10 \(\int \frac{\sqrt{b x^2}}{x^5} \, dx\)

Optimal. Leaf size=16 \[ -\frac{\sqrt{b x^2}}{3 x^4} \]

[Out]

-Sqrt[b*x^2]/(3*x^4)

________________________________________________________________________________________

Rubi [A]  time = 0.001575, antiderivative size = 16, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {15, 30} \[ -\frac{\sqrt{b x^2}}{3 x^4} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*x^2]/x^5,x]

[Out]

-Sqrt[b*x^2]/(3*x^4)

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

\begin{align*} \int \frac{\sqrt{b x^2}}{x^5} \, dx &=\frac{\sqrt{b x^2} \int \frac{1}{x^4} \, dx}{x}\\ &=-\frac{\sqrt{b x^2}}{3 x^4}\\ \end{align*}

Mathematica [A]  time = 0.0013541, size = 16, normalized size = 1. \[ -\frac{\sqrt{b x^2}}{3 x^4} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*x^2]/x^5,x]

[Out]

-Sqrt[b*x^2]/(3*x^4)

________________________________________________________________________________________

Maple [A]  time = 0.002, size = 13, normalized size = 0.8 \begin{align*} -{\frac{1}{3\,{x}^{4}}\sqrt{b{x}^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2)^(1/2)/x^5,x)

[Out]

-1/3*(b*x^2)^(1/2)/x^4

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2)^(1/2)/x^5,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [A]  time = 1.19454, size = 30, normalized size = 1.88 \begin{align*} -\frac{\sqrt{b x^{2}}}{3 \, x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2)^(1/2)/x^5,x, algorithm="fricas")

[Out]

-1/3*sqrt(b*x^2)/x^4

________________________________________________________________________________________

Sympy [A]  time = 0.683411, size = 17, normalized size = 1.06 \begin{align*} - \frac{\sqrt{b} \sqrt{x^{2}}}{3 x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2)**(1/2)/x**5,x)

[Out]

-sqrt(b)*sqrt(x**2)/(3*x**4)

________________________________________________________________________________________

Giac [A]  time = 1.19977, size = 14, normalized size = 0.88 \begin{align*} -\frac{\sqrt{b} \mathrm{sgn}\left (x\right )}{3 \, x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2)^(1/2)/x^5,x, algorithm="giac")

[Out]

-1/3*sqrt(b)*sgn(x)/x^3